GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.

نویسندگان

  • Martin Kawe
  • Andreas Plückthun
چکیده

While support in protein folding by molecular chaperones is extremely efficient for endogenous polypeptides, it often fails for recombinant proteins in a bacterial host, thus constituting a major hurdle for protein research and biotechnology. To understand the reasons for this difference and to answer the question of whether it is feasible to design tailor-made chaperones, we investigated one of the most prominent bacterial chaperones, the GroEL/ES ring complex. On the basis of structural data, we designed and constructed a combinatorial GroEL library, where the substrate-binding site was randomized. Screening and selection experiments with this library demonstrated that substrate binding and release is supported by many variants, but the majority of the library members failed to assist in chaperonin-mediated protein folding under conditions where spontaneous folding is suppressed. These findings revealed a conflict between binding of substrate and binding of the co-chaperonin GroES. As a consequence, the window of mutational freedom in that region of GroEL is very small. In screening experiments, we could identify GroEL variants slightly improved for a given substrate, which were still promiscuous. As the substrate-binding site of the GroEL molecule overlaps strongly with the site of cofactor binding, the outcome of our experiments suggests that maintenance of cofactor binding affinity is more critical for chaperonin-mediated protein folding than energetically optimized substrate recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Substrate Binding Induces Conformational Changes in the Chaperonin GroEL

Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine ...

متن کامل

Chaperonin-mediated protein folding: fate of substrate polypeptide.

Chaperonins are megadalton ring assemblies that mediate essential ATP-dependent assistance of protein folding to the native state in a variety of cellular compartments, including the mitochondrial matrix, the eukaryotic cytosol, and the bacterial cytoplasm. Structural studies of the bacterial chaperonin, GroEL, both alone and in complex with its co-chaperonin, GroES, have resolved the states of...

متن کامل

Protein substrate binding induces conformational changes in the chaperonin GroEL. A suggested mechanism for unfoldase activity.

Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine ...

متن کامل

Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.

Over last two decades many researchers have demonstrated the mechanisms of how the Escherichia coli chaperonin GroEL and GroES work in the binding and folding of different aggregation prone substrate proteins both in vivo and in vitro. However, preliminary aspects, such as influence of co-expressing GroEL and GroES on the over expression of other recombinant proteins in E. coli cells and subseq...

متن کامل

Mechanism of substrate recognition by the chaperonin GroEL.

The bacterial chaperonin GroEL functions with its cofactor GroES in assisting the folding of a wide range of proteins in an ATP-dependent manner. GroEL-GroES constitute one of the main chaperone systems in the Escherichia coli cytoplasm. The chaperonin facilitates protein folding by enclosing substrate proteins in a cage defined by the GroEL cylinder and the GroES cap where folding can take pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 357 2  شماره 

صفحات  -

تاریخ انتشار 2006